Active Learning for Structured Prediction from Partially Labeled Data
ثبت نشده
چکیده
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 ICCV #834 ICCV #834 ICCV 2017 Submission #834. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
منابع مشابه
Reducing Labeling Effort for Structured Prediction Tasks
A common obstacle preventing the rapid deployment of supervised machine learning algorithms is the lack of labeled training data. This is particularly expensive to obtain for structured prediction tasks, where each training instance may have multiple, interacting labels, all of which must be correctly annotated for the instance to be of use to the learner. Traditional active learning addresses ...
متن کاملActive Learning for Structured Prediction from Partially Labeled Data
We propose a general purpose active learning algorithm for structured prediction – gathering labeled data for training a model that outputs a set of related labels for an image/video. Active learning starts with a limited initial training set, then iterates querying a user for labels on unlabeled data and retraining the model. We propose a novel algorithm for selecting data for labeling, choosi...
متن کاملPropagation Kernels for Partially Labeled Graphs
Learning from complex data is becoming increasingly important, and graph kernels have recently evolved into a rapidly developing branch of learning on structured data. However, previously proposed kernels rely on having discrete node label information. Propagation kernels leverage the power of continuous node label distributions as graph features and hence, enhance traditional graph kernels to ...
متن کاملPartially Observed Maximum Entropy Discrimination Markov Networks
Learning graphical models with hidden variables can offer semantic insights to complex data and lead to salient structured predictors without relying on expensive, sometime unattainable fully annotated training data. While likelihood-based methods have been extensively explored, to our knowledge, learning structured prediction models with latent variables based on the max-margin principle remai...
متن کاملLatent Structured Active Learning
In this paper we present active learning algorithms in the context of structured prediction problems. To reduce the amount of labeling necessary to learn good models, our algorithms operate with weakly labeled data and we query additional examples based on entropies of local marginals, which are a good surrogate for uncertainty. We demonstrate the effectiveness of our approach in the task of 3D...
متن کامل